Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610239

RESUMO

Unmanned Aerial Vehicle (UAV) deployment has risen rapidly in recent years. They are now used in a wide range of applications, from critical safety-of-life scenarios like nuclear power plant surveillance to entertainment and hobby applications. While the popularity of drones has grown lately, the associated intentional and unintentional security threats require adequate consideration. Thus, there is an urgent need for real-time accurate detection and classification of drones. This article provides an overview of drone detection approaches, highlighting their benefits and limitations. We analyze detection techniques that employ radars, acoustic and optical sensors, and emitted radio frequency (RF) signals. We compare their performance, accuracy, and cost under different operating conditions. We conclude that multi-sensor detection systems offer more compelling results, but further research is required.

2.
Sensors (Basel) ; 24(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38544127

RESUMO

For many applications, drones are required to operate entirely or partially autonomously. In order to fly completely or partially on their own, drones need to access location services for navigation commands. While using the Global Positioning System (GPS) is an obvious choice, GPS is not always available, can be spoofed or jammed, and is highly error-prone for indoor and underground environments. The ranging method using beacons is one of the most popular methods for localization, especially for indoor environments. In general, the localization error in this class is due to two factors: the ranging error, and the error induced by the relative geometry between the beacons and the target object to be localized. This paper proposes OPTILOD (Optimal Beacon Placement for High-Accuracy Indoor Localization of Drones), an optimization algorithm for the optimal placement of beacons deployed in three-dimensional indoor environments. OPTILOD leverages advances in evolutionary algorithms to compute the minimum number of beacons and their optimal placement, thereby minimizing the localization error. These problems belong to the Mixed Integer Programming (MIP) class and are both considered NP-hard. Despite this, OPTILOD can provide multiple optimal beacon configurations that minimize the localization error and the number of deployed beacons concurrently and efficiently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...